Day 04

Rigid Body Transformations

Rigid Body Transformations in 3D

Homogeneous Representation

- every rigid-body transformation can be represented as a rotation followed by a translation in the same frame
 - ▶ as a 4x4 matrix

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 \end{bmatrix}$$

where R is a 3x3 rotation matrix and d is a 3x1 translation vector

Homogeneous Representation

- ▶ in some frame *i*
 - points

$$P^{i} = \begin{bmatrix} p^{i} \\ 1 \end{bmatrix}$$

vectors

$$V^{i} = \begin{bmatrix} v^{i} \\ 1 \end{bmatrix}$$

Inverse Transformation

the inverse of a transformation undoes the original transformation

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

then

▶ if

$$T^{-1} = \begin{bmatrix} R^T & -R^T d \\ 0 & 0 & 0 \end{bmatrix}$$

Transform Equations

Frames in Computer-Aided Surgery

Frames in Computer-Aided Surgery

Frames in CGI

Frames in Computer-Aided Surgery

Fiducial Registration

- physical markers easily locatable in the medical imagery and on the patient are often used in neurosurgery to establish the spatial relationship between the patient and the images
- same fundamental problem appears in many different fields and goes by many different names
 - fiducial registration
 - point-based registration
 - paired-point registration
 - registration with correspondances
 - absolute orientation
 - point fitting

• • • •

Problem Statement

• given *n* points measured in $\{L\}$ and $\{R\}$ estimate the transformation T_L^R (or T_R^L)

